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Abstract

Diffraction remains the premier tool for sampling the residual stresses in
materials non destructively, the only one capable of determining the entire stress tensor,
and with few assumptions. The technique has kept pace with the needs of researchers
in the area of multiphase materials; now, the stresses can be separated into macro and
micro components. The deviatoric macro and micro stress components and hydrostatic
macrostress can be measured without knowledge of the unstressed lattice parameter.
Bond strength of film and fiber and the yield stress can be examined by cooling
samples, and there are new developments that enable gradients to be determined.

Residual stresses can play an important role in a material's properties and
performance -- from miniature solid state devices to railroad ties, pipelines and even in
large telescope mirrors 11,2,3). While there are a host of techniques for measuring
stress, destructively or non destructively, none approach the detail and versatility
possible with diffraction of x-rays or neutrons, and to illustrate the techniques and this
versatility is the purpose of this paper.

SGenhrp', ;we can speak of the ability to measure of two kinds of stresses in
materials ,, macro 'and microstresses. Macrostresses an the stresses traditionally
measured by di.sse.ior e kind that would develop in a truly homogeneous material,
~(hich there arefevM Jny. It is often said that these are the only stresses about

an 66'engineer is r 'interested, but we shall see that this is not the case at all.
S•Macrasiresses lI•ily arise in a material from different amounts of plastic flow
i`51 ferent reins of a fnderial. For example, in bending, the outer layers may deform
plastically, whie the region near the central axis is deforming elastically. When released
there is a gradient in stress throughout the beam, but the stress sums to zero across a
sectional area,

YJo dA=0 (10



Furthermore,

OIj = 0 (2a)

or:

a CF13 0a23 )'33 (2b)
a3xi '&2 ' 023

Here xI and x2 are orthogonal axes on the surface and x3 is normal to it. As the macro
stresses are assumed to be uniform in a surface, the first two terms are zero and
therefore the last term is zero. There is no gradient and a33 must have the same value
in the bulk as in the surface. Another condition is that in the absence of applied loads at
any point:

oYij nj = 0 (3)

where ni is normal to the surface. Now, this means that a33 . n3 = 0, or o3 3 = 0 at the
surface and hence internally as well. Similarly it can be shown that for macrostresses,
a23 = C13 = 0 as well.

The microstresses arise from microscopic inhomogeneily from the elastic
anisotropy of a grain in a polycrystalline array, from the differences in yield of one grain
with respect to its neighbors, etc. Such phenomena can occur in a single phase
material, and in a multiphase material they can arise from the difference in elastic or
plastic properties of the different phases. These stresses must average to zero over the
entire volume.

JfaldV = 0 (4)

From this equation, for a two phase material, the microstresses in both phases
balance 12):

I-f I< ý'aq >mawtx +< 'tai >ppt = 0 (5)

The carats imply averaging over the measuring volume and f is the volume fraction. This
equation can be extended to any number of phases. Furthermore, ai3 terms can exist
in this case, since these microstresses do vary from point to point. They can be detected
since diffraction samples not just the stresses at a surface but in a volume to a depth of
multiples of the precipitate dimension. One important point about Eqn. 5: the stresses
In a minor phase can be very large and opposite In sign to a (small) stress in the major
phase, and this can be quite Important for example in crack initiation or stress corrosion.



Having defined the two kinds of stresses operationally, we turn now to the
diffraction techniques to measure them. The basic idea is quite simple. The spacing of
lattice planes acts as an internal elastic strain gouge; if the stress changes, the spacing
changes, and a diffraction peak moves, as illustrated in Fig. 1. With x-rays, a few tens of
microns can be probed, and in some cases, the stresses under a thick coat can be
examined (41. By using glancing angle techniques, very thin layer of 30-100A or so can
be examined. As x-rays have an index of refraction slightly less than unity, total external
reflection occurs at a few mrad; the refracted beam travels along the surface, acting as
a source for diffraction from planes perpendicular to the surface to these small depths,
Fig. 2. (The depth may be varied with this glancing angle.) For stresses in a surface
these planes are more sensitive to the stress than planes parallel to the surface, which
only "feel' the stresses through Poisson's effect. An example of such a study is shown in
Fig. 3 for Ai alloy film used as interconnect in solid state devices (5) For deplhs greater
than a few tens of microns, glancing angles are not sufficient and layers must be
removed.

With x-rays, portable field units are available and measurements can be done in
seconds, if need be.
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Figure 1. a) Schematic of diffractometer. The incident beam diffracts x-rays of
wavelength X. from planes that satisfy Bragg's law in crystals with these planes parallel
to the sample's surface. If the surface is in compression, because of Poisson's ratio
these planes are further apart than in the stress-free state. The d spacing is obtained
from the peak in intensity versus scattering angle 20 and Bragg's law X, = 2dsinO. bi
After the specimen is tilled, diffraction occurs from other grains, but from the same
planes, and these are more nearly perpendicular to the stress. These planes are less
separated than in (a). The peak occurs at higher angles of 20. cl After the specimen is
tilled, the stress is measured in n direction which is the intersection of the circle of lilt and
the surface of the specimen.



jo

0E0 0

0 "-(

_ci

00

0

_ o

00

o oo
o o

(•)qjdac] uoijo-ijaUad

CC

SAcceston For w•
NTIS CRAMI w
DTIC TAB.

U(Uannounced)1
Justification ....... . .m

BY ....... .........-

By~

Dist, ibulion Fo

Availability Codes . •
Nit Avail and/or
Dist b SpecialAvI l an°b

WnIa-

0m

o- A! -°



The main advantage of using neutrons is the greater depth of penetration --

1O,O001gm or so at least for most materials. Transmission techniques, are sometimes
possible so that the planes most sensitive to the stress can be chosen. Because of such
depths, the macrostresses usually average to zero, and only the microstresses are
measured. However, if masks are employed, Fig. 4, the beam can be directed to
sample only a small volume ( - 1 mm 3) and both kinds of stresses are measured.
Smaller sampling regions are not possible, and even in this case, measurements take
hours due to the weakness of neutron beams compared to x-rays -- and of course,
access to a reactor is required. (Ref. 3 is an excellent book from a recent conference on
the use of neutrons in stress determination.)

To properly sample a polycrystalline specimen, at least 2000 grains are required
and even then the sample must be oscillated. For example, with x-rays, a 150ugm beam
can be employed if the grain size is 5p±m. Smaller beam sizes require examination
grain by grain.

Adequate sensitivity of -10 MPa requires using reflections in the range of 1500 20,
which precludes using electron diffraction.

Basic Theory

The sample is described in terms of co-ordinates Si, as seen in Fig. 5.
Measurements are made in the Li system, of the d spacing and hence the strain, E, of
planes perpendicular to L3, at some sample tilt to the beam of 4,iy:

<a > A'
< >= E V ,= <£11 >cos2+sin2,i+<e" >sin2+sin2-

02
+<E 3 >cOs 2 + 4+<E >sin2*sin2W

+<eQ > cos4sin2V+ < Ea > sin~sin21l. (6a)

The trigonometric terms are simply those to rotate the rank two strain tipsor !n the S,,
system to the Li measuring system. Measurements are made over several Wi and 4 -and
this equation is fit via least squares; the recommended values are , = O, •r0;1200, and
six V values to as high a value as possible (6). This maximizes the pcision and.
minimizes any effects of steep gradients.

If the stresses are biaxial, < e' > = 0, and the "d" spacing is linear vs. sin 2Ap. The,,
value of do is not needed in this case, as the stress value comes from VFSe s-lop,'.
sin 2V. If there are steep gradients, there is curvature in this plot, the same for ± AV or
# = 0, 180, 340, as well as 0, 60, 1200. If the 023, a13 terms are significant, these curves
will differ. Finally, if the stresses vary greatly from point to point, due to elastic or plastic
effects, there will be oscillations. If there is not much texture, the best line still gives the
correct average value (7). If there is texture, the oscillations can be employed to give an
indication of the range of strains (8).
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Therefore, it is clear that it is very important to measure d vs. sin 2 .q. In the past,
many people have assumed linearity and measured only two points. Obviously, with
what we know now this is dangerous! Furthermore, it has been shown that several V
tilts can be examined in the same time as two tilts with the same or belter precision (91.

From these strains the stresses may be calculated:

<t 2'>=1. SeU>-k S1 > + < F'>+<E )
< 12 - [</iJ >- S2 /2+3S2

(6b)

or combining 6a and 6b:

< Cow >= -1"[< al > cos2 0+ < (712 > sin2o+ < 022 > sin2 *]sin2 V, +
2

222 a >c CO +S2 1 (<o1 1 >+o 2 +a 3 J

"S 0"13 > COSO+ < 0 23 > sin•]sin2'vy. (7)
2

The x-ray elastic constants S1 and L2 can be calculated from the average of Voight and
2

Reuss assumptions (101 or from KrOner's method Ill) (an anisotropic grain in an isotropic
matrix). Both give about the same result. If a sample is highly textured, it is best to
measure these by applying known stresses in a jig on a diffractometer - in tension or
bending (12).

Equations exist (9,12) for the errors in the resultant stresses and strains and it is
important to use these. The error is n=t just that found from the best fit through the data,
because each point has some statistical error and there are also errors in the elastic
constants. In fact, based on these error equations, software has been developed for a
PC (13) to determine stress (or elastic constants) to an operator-specified precision. It is
difficult to be sure of the proper counting times without experience and such software
minimizes wasted time. (Unfortunately, the available commercial software does not
appear to properly take these errors into account!)

Determining a stress tensor in this way is sufficiently well established in a variety
of materials that examples are not needed at this point. Nonetheless, some interesting
possibilities exist when using diffraction to measure strains, that are particularly
attractive, for thin films on brittle substrates, or for metal matrix composites. By following
the "d' spacing while decreasing the temperature, it is possible to examine how tightly
bound is the film or particle to its matrix, by making comparisons to known elastic
solutions for this binding. If plastic yielding occurs, the d spacing will no longer change
as only elastic strains are detected. An example is given in Fig. 6, where it is clear that
the polycrystalline Al-Cu film on single crystal Si is fully bound, and the yield stress is
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clearly delineated (14). (The stresses arise in this case due to the different thermal
contraction of the Si and alloy.)

The microstresses can also be examined by this cooling technique. A calculation
can be made of the microstresses vs. temperature following Eshelby's equivalent
inclusion procedure (15). The d spacing cf a peak from either phase can then be
followed as the temperature lowered. Two examples of this in ceramics composites are
given in Fig. 7, by M. Oden, Linkoping University while visiting us. In SiC reinforced A120 3
there are clearly microstresses, but in SiC-TiB2 there are no stresses, probably because
of local cracking. This was verified by actually measuring the stresses.

One word of caution on using this Eshelby calculation. Tsakalokos 116) has
recently shown that if a particle is angular, the internal stresses are not constant, as is
assumed in Eshelby's formulation. Such stresses due to differences in thermal
contraction can also arise in composites and in a series of papers James, Marshall and
co-workers have established this, making the particular point that measurements of the
stresses are useful to validate modeling, because of the difficulty of including proper
constitutive equations in such models and the many processes that can occur during the
use of such materials. They have also found that:

al In large-diameter fibers-reinforced metal matrix composites (large
relative to beam penetration) the stress state at the surface is biaxial; there are
significant gradients as the fiber interface is approached, and the stress state becomes
triaxial (17,18).

b) There is a good comparison between stresses calculated from fiber-
matrix interfacial sliding and from x-rays (19), which suggest that measured stresses
may be useful in obtaining the interfacial Ifriction) shear stress.

c) Thermal or mechanical fatigue can lead to reductions in stress due to
matrix deformation, or interfacial cracking. Stress measurements can be used to detect
such effects 1201. A similar effect was found by Hen and Predicki in A120 3 fiber/glass
composites (21). Furthermore, Ballard and Predecki (22) were able to measure the zero
strain temperature in SIC reinforced A120 3 (the temperature at which the thermal strains
reverse on heating. If this is below the original processing temperature, some form of
strain relief must have occurred.).

One vital note before proceeding: If the stress is truly hydrostatic,
011 = a`22 = 0"33, there should be no t, or -V dependence of d. In this case, neutrons
may be a belter probe than x-rays. Due to the shallow x-ray penetration only the
region of stress relaxation near the surface is seen (23). Triaxial analysis should be used
if this is suspected, or neutrons.

Separating Micro and Macro Stresses

This is readily done for any number of phases. The stress tensor is measured in
each phase and then Eq. 5 applied. In particular, for two-phases, ox and J3:

<tCO >=M0" +<PC' > (8a)
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l p0ij >Maij<rL0• >(8b)

(I-fk<aa > f<4 aP >= 0. (8c)
I 1i

The macrostress, Mai, is the same in all phases and therefore there are three

unknowns in these three equations, permitting a solution for each component of the
stress tensor, as first shown in Refs. 24,25. (See also Ref. 26). Alternatively, by using
neutrons, and sampling the entire cross section, as mentioned above, only the
microstresses are measured; then with a mask a smaller region can be sampled,
involving both types of stress, and the macrostress determined by the difference of these
two measurements (27).

This separation has been employed in a number of studies.

a) In a 60-40 brass, the matrix contained mostly macrostre"-ses (25).

b) In 1080 steel, shot peening produces mainly macrostresses, whereas in
simple extension mainly microstresses occur (281.

c) When a machined Sic-TiB 2 ceramic composile was bent (29), the
rn icrostresses generated by thermal mismatch during fabrication decayed, but not the
macrostresses, signaling stress-induced microstress relief as the toughening
mechanism. Thus, this local micro-cracking can be detected non destructively.

dl Carbon coatings on SiC fiber reinforcements in A120 3 reduced the
microstresses in the whiskers and the matrix (30,31).

Predicki, Abuhasan and Barrett (32) have shown that it is possible in some
situations to obtain the microstresses in the fiber just from the stresses in the matrix. For

example, M 0a 3 3 = 0. Then the total a3 3 in the matrix is the microstress, 11a 33. With Eqn.
5, the microstress in the fiber is obtained. This might prove particularly useful for non-
crystalline fibers, or when there is severe fiber texture so that a useful fiber reflection is
not available.

Eliminating The Need To Know The Unstressed Lattice Parameter

If the stress system is biaxial, this value isn't needed, but if it is triaxial, this is
essential. In multiphase materials or composites, it is sometimes difficult to 1t0r, this
value; it is affected by fault density, composition; composition gradients, etc. anu may be
different in the bulk and in the composite, and great care is needed. However, a great
deal at information can be obtained without this term, if we separate the stress
components into deviatoric and hydrostatic terms. Following Winholtz (33) let:

a1 = 85iH +'i (9)

The hydrostatic stress TH Is given by:

TH = 110 1 + 0.2 2 + 0 3̀ 3 )/3. l1("



The deviatoric stresses are given by:

Sqij=iJ-H :ij 
(1

From equations 10 and 11 note that
T;11 + 22 + T33 0 (12)

Substituting equations 6b, 9 and 12 into Eq. 7 and solving for <d' >gives:0V

+<<a >t > d'iS' / 2)0 + cos2 $Isin2
11 0 2

+<t1cc' >da(s' /2)0+son20dsin 2 i

+<t 1ra >dc(Sc/2)sin20sin2V

+<t z13 >dc'(S' /2)cos~sin2V
+<',c3 > d ,(Sa / 2)sinosin2V. (131

Here we have < d4 > (the parameter actually measured) in terms of the stresses in the

sample and the unstressed lattice parameter for that phase. The term <t > has
33

been eliminated using equation 12. As the deviatoric stresses vary with 0 and V while
the hydrostatic stress does not, the devintoric stress tensor can be determined by using
the different angular dependencies using least squares techniques. Equation 12 is then

used to get <t -to>" Since it is simply a multiplier, errors in do' will introduce only small
errors in determining the deviatoric stresses. The hydrostatic stress, however, is
contained in one of three terms that do not vary with 0 and V . Only the sum of these

three terms can be determined from the variation of < d' > with 0 and V. In the first

term, the hydrostatic stress is multiplied by elastic constants. Consequently, this term will

be small in relation to d' which is one of the other terms which does not vary with 4
0

and W. Thus, the unstressed lattice spacing must be known very accurately in order to
determine the hydrostatic component of the stress tensor while ,the deviatoric
components of the stress tensor are relatively insensitive to it.

Equation 8 is also valid separately for separating the hydrostatic and deviatoric
stress tensors into micro and macro components.



While it is desirable to know the entire stress tensor, the devialoric stress lensor
may be sufficient for many purposes, especially if the unstressed lattice parameters
cannot be measured. If comparison measurements are to be made, for instance before
and after a treatment, the difference in stress Au will not contain any error due to errors
in do. Also, if measurements are to be compared to a model calculation the devialoric
stresses may be sufficient to justify the model.

It is also worth noting that the deviatoric terms require only :L2- not S1. Furthermore, the
2

hydrostatic macrostress may be determined because M 3 3 = 0. Thus:

M1;H =-M'T33 (14)

In sum, all of the macro and micro deviatoric stress and the hydrostatic
macrostress can be determined without knowledge of do, the unstressed lattice
parameter.

This approach has been used to examine the load sharing in 1080 steel in low
cycle fatigue (34). The development of stresses in a composite In a uniaxial test is
illustrated in Fig. 8. Note that after unloading, the microstresses are different in different
phases. After the fatigue hysterisis loop stabilized, the test was.slopped at different
points along the loop, the stresses measured and separated. The devialoric
microstresses were added to the applied stress tensor to give the stresses in each
phase during fatigue, giving the result, for example, for the pearlilic condition, in Fig. 9.

II

II

Figure 8. Mechanical behavior of a two phase material In a tensile test, assuming the
same Young's modulus for both phases. The origin of the microstresses, In each phase
on unloading Is shown. From Ref. 34.



The pearlitic condition, spheroidite and tempered martensite were examined in
this way and the authors used an Eshelby modei to attempt to simulate the
measurements. This model (which assumes non deforming inclusions) gave good
results for the spherioditic condition, but the values were too high for pearlite, probably
because the cementite deforms in this case. However, the model did predict that higher
stresses and strain hardening would occur in the pearlite than in the spheroidite. For
the martensite phase, the theory was in good agreement with results for the first cycle,
but did not represent the increase in macrostresses on subsequent cycling.

Smith et al (35) have also looked at the residual microstresses for various
morphologies in as produced SiC reinforced Al and found differences. Allen et al (36)
examined the microstresses in this type of composite in tension and tested an Eshelby
model against the results, again finding qualitative but not quantitative agreement -- in
this case due to stress relaxation via plastic flow.

Stress Gradients

Throughout this text, brackets around stress components have often been
employed to signal averaging over the depth of penetration. In effect

D
< cyii R >= f Do it)exp-lz / pdz if exp(-z / pldz (15)

0 0

Here "P" represents the li/e penetration depth, which for sample tilt -q around the omega
axis is, for a mass absorption coefficient, gi:

P = (sina + sinj3)/p sina sin J3) (16)

where a and 13 are the incident and scattered angles. Predecki (371 has recently pointed
out that for D larger than P (say lOp the denominator is just P. Furthermore, if data is
obtained vs. P (by grazing incidence for example, or the 'do spacing vs. sin2A$, the strain
or stress gradient might be obtained directly, because the numerator in Eq. 16 is a
LePlace transform, and the inverse yields ait). It is only necessary to assume some
reasonable mathematical form for <a1 (P)>. An actual example from this study is given
in Fig. 10. This could prove to be an exciting development.

Diffraction remains the premier tool for examining residual stresses non
destructively, especially In composites. The entire stress tensor can be obtained, as well
as the separate micro and macro stresses. The deviatoric macro and microstresses
and hydrostatic macrostress can be sampled without knowledge of the unstressed
lattice parameters of the phases, and by cooling the presence of microstreses can be
deterrmined, the strength of interface bonding and the yield stress of any phase. Via
grazing incidence, gradients can be examined and there are new developments on this
topic as well. The technique has more than kept pace with the needs of the research
community as Indicated by many papers in this conference.
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